Classifier Ensemble Framework: a Diversity Based Approach

نویسندگان

  • Hamid Parvin 1Department of Computer Science, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
  • Hosein Alizadeh Department of Computer Science, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran
  • Mohsen Moshki Department of Computer Science, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani,
چکیده مقاله:

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition, have been subject to this transition. The classifier ensemble which uses a number of base classifiers is considered as meta-classifier to learn any classification problem in pattern recognition. Although some researchers think they are better than single classifiers, they will not be better if some conditions are not met. The most important condition among them is diversity of base classifiers. Generally in design of multiple classifier systems, the more diverse the results of the classifiers, the more appropriate the aggregated result. It has been shown that the necessary diversity for the ensemble can be achieved by manipulation of dataset features, manipulation of data points in dataset, different sub-samplings of dataset, and usage of different classification algorithms. We also propose a new method of creating this diversity. We use Linear Discriminant Analysis to manipulate the data points in dataset. Although the classifier ensemble produced by proposed method may not always outperform all of its base classifiers, it always possesses the diversity needed for creation of an ensemble, and consequently it always outperforms all of its base classifiers on average.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Framework for Online Classifier Ensemble

We propose a Bayesian framework for recursively estimating the classifier weights in online learning of a classifier ensemble. In contrast with past methods, such as stochastic gradient descent or online boosting, our framework estimates the weights in terms of evolving posterior distributions. For a specified class of loss functions, we show that it is possible to formulate a suitably defined ...

متن کامل

A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble

An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...

متن کامل

A Bayesian Approach for Online Classifier Ensemble

We propose a Bayesian approach for recursively estimating the classifier weights in online learning of a classifier ensemble. In contrast with past methods, such as stochastic gradient descent or online boosting, our approach estimates the weights by recursively updating its posterior distribution. For a specified class of loss functions, we show that it is possible to formulate a suitably defi...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

An Ensemble Approach to Classifier Construction based on Bootstrap Aggregation

In this paper, we introduce a new approach to the classification of streaming data based on bootstrap aggregation (bagging). The proposed approach creates an ensemble model by using ID3 classifier, naïve Bayesian classifier, and k-Nearest-Neighbor classifier for a learning scheme where each classifier gives the weighted prediction. ID3, naïve Bayesian, and k-NearestNeighbor classifiers are very...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 2

صفحات  1- 10

تاریخ انتشار 2016-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023